[vsnet-chat 7803] Re: Period Analysis using the Lasso
Taichi Kato
tkato at kusastro.kyoto-u.ac.jp
Wed May 23 17:36:57 JST 2012
Lasso may be too new to astronomy and may not be readily understandable.
> For the simplest case p=0, s=1,
> x(t)=a_0+(C_1*cos(w*t)+S_1*sin(w*t))
> with 3(!) parameters a_0, C_1, S_1, instead of two C_1, S_1,
> x(t)-xm=(C_1*cos(w*t)+S_1*sin(w*t))
> as generally the sample mean xm does not coincide with the best fit parameter a_0
> (when the observations are irregularly distributed over phases).
>
> Generally, the trend a_0+a_1*(t-tm)+a_2*(t-tm)^2+...+a_p*(t-tm)^p
Although this is not directly related to the lasso analysis,
if the number of parameters is fixed, your problem can be very easily
(and gracefully) solved by using Markov-Chain Monte Carlo (MCMC) method.
The error estimates of parameters can be easily obtained.
We may then evaluate the fit by other method (AIC might be another
choice).
See Appendix in:
http://adsabs.harvard.edu/abs/2010PASJ...62.1525K
A sample R code. This is a four-parameter problem applied to BW Scl
(0.0032 and other parameters are dependent on the data).
Let's see how simple R code is (x is observation data).
psin <- function(p,z) {
sum(-(z$V2-p[1]*sin((2*pi/p[2])*z$V1+p[3])-p[4])^2/0.0032)
}
n <- 1000
zz <- matrix(0,n,4)
pp <- numeric(n)
zp <- c(0.05814, 0.05497, 1.4109, 0.0011)
parameter <- c(0.001, 0.000003, 0.018, 0.0004)
for (i in 1:n) {
zpnew <- zp + rnorm(4)*parameter
p1 <- psin(zp,x)
p2 <- psin(zpnew,x)
r <- p2-p1
if (r > log(runif(1))) {
zp <- zpnew
pp[i] <- p2
} else {
pp[i] <- p1
}
zz[i,] <- zp
}
More information about the vsnet-chat
mailing list